Copied to
clipboard

G = C427D9order 288 = 25·32

6th semidirect product of C42 and D9 acting via D9/C9=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4.5D36, C427D9, C36.28D4, C12.39D12, (C4×C36)⋊5C2, D18⋊C41C2, (C4×C12).7S3, C18.4(C2×D4), C2.6(C2×D36), (C2×D36).2C2, (C2×C4).65D18, C6.33(C2×D12), C91(C4.4D4), (C2×Dic18)⋊1C2, C18.5(C4○D4), (C2×C12).339D6, C3.(C427S3), C6.75(C4○D12), (C2×C18).16C23, (C2×C36).88C22, C2.7(D365C2), (C2×Dic9).3C22, (C22×D9).2C22, C22.37(C22×D9), (C2×C6).173(C22×S3), SmallGroup(288,85)

Series: Derived Chief Lower central Upper central

C1C2×C18 — C427D9
C1C3C9C18C2×C18C22×D9D18⋊C4 — C427D9
C9C2×C18 — C427D9
C1C22C42

Generators and relations for C427D9
 G = < a,b,c,d | a4=b4=c9=d2=1, ab=ba, ac=ca, dad=ab2, bc=cb, dbd=a2b, dcd=c-1 >

Subgroups: 604 in 114 conjugacy classes, 44 normal (18 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C9, Dic3, C12, C12, D6, C2×C6, C42, C22⋊C4, C2×D4, C2×Q8, D9, C18, C18, Dic6, D12, C2×Dic3, C2×C12, C2×C12, C22×S3, C4.4D4, Dic9, C36, C36, D18, C2×C18, D6⋊C4, C4×C12, C2×Dic6, C2×D12, Dic18, D36, C2×Dic9, C2×C36, C2×C36, C22×D9, C427S3, D18⋊C4, C4×C36, C2×Dic18, C2×D36, C427D9
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, D9, D12, C22×S3, C4.4D4, D18, C2×D12, C4○D12, D36, C22×D9, C427S3, C2×D36, D365C2, C427D9

Smallest permutation representation of C427D9
On 144 points
Generators in S144
(1 95 23 77)(2 96 24 78)(3 97 25 79)(4 98 26 80)(5 99 27 81)(6 91 19 73)(7 92 20 74)(8 93 21 75)(9 94 22 76)(10 100 28 82)(11 101 29 83)(12 102 30 84)(13 103 31 85)(14 104 32 86)(15 105 33 87)(16 106 34 88)(17 107 35 89)(18 108 36 90)(37 127 55 109)(38 128 56 110)(39 129 57 111)(40 130 58 112)(41 131 59 113)(42 132 60 114)(43 133 61 115)(44 134 62 116)(45 135 63 117)(46 136 64 118)(47 137 65 119)(48 138 66 120)(49 139 67 121)(50 140 68 122)(51 141 69 123)(52 142 70 124)(53 143 71 125)(54 144 72 126)
(1 50 14 41)(2 51 15 42)(3 52 16 43)(4 53 17 44)(5 54 18 45)(6 46 10 37)(7 47 11 38)(8 48 12 39)(9 49 13 40)(19 64 28 55)(20 65 29 56)(21 66 30 57)(22 67 31 58)(23 68 32 59)(24 69 33 60)(25 70 34 61)(26 71 35 62)(27 72 36 63)(73 118 82 109)(74 119 83 110)(75 120 84 111)(76 121 85 112)(77 122 86 113)(78 123 87 114)(79 124 88 115)(80 125 89 116)(81 126 90 117)(91 136 100 127)(92 137 101 128)(93 138 102 129)(94 139 103 130)(95 140 104 131)(96 141 105 132)(97 142 106 133)(98 143 107 134)(99 144 108 135)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 9)(2 8)(3 7)(4 6)(10 17)(11 16)(12 15)(13 14)(19 26)(20 25)(21 24)(22 23)(28 35)(29 34)(30 33)(31 32)(37 62)(38 61)(39 60)(40 59)(41 58)(42 57)(43 56)(44 55)(45 63)(46 71)(47 70)(48 69)(49 68)(50 67)(51 66)(52 65)(53 64)(54 72)(73 89)(74 88)(75 87)(76 86)(77 85)(78 84)(79 83)(80 82)(81 90)(91 107)(92 106)(93 105)(94 104)(95 103)(96 102)(97 101)(98 100)(99 108)(109 143)(110 142)(111 141)(112 140)(113 139)(114 138)(115 137)(116 136)(117 144)(118 134)(119 133)(120 132)(121 131)(122 130)(123 129)(124 128)(125 127)(126 135)

G:=sub<Sym(144)| (1,95,23,77)(2,96,24,78)(3,97,25,79)(4,98,26,80)(5,99,27,81)(6,91,19,73)(7,92,20,74)(8,93,21,75)(9,94,22,76)(10,100,28,82)(11,101,29,83)(12,102,30,84)(13,103,31,85)(14,104,32,86)(15,105,33,87)(16,106,34,88)(17,107,35,89)(18,108,36,90)(37,127,55,109)(38,128,56,110)(39,129,57,111)(40,130,58,112)(41,131,59,113)(42,132,60,114)(43,133,61,115)(44,134,62,116)(45,135,63,117)(46,136,64,118)(47,137,65,119)(48,138,66,120)(49,139,67,121)(50,140,68,122)(51,141,69,123)(52,142,70,124)(53,143,71,125)(54,144,72,126), (1,50,14,41)(2,51,15,42)(3,52,16,43)(4,53,17,44)(5,54,18,45)(6,46,10,37)(7,47,11,38)(8,48,12,39)(9,49,13,40)(19,64,28,55)(20,65,29,56)(21,66,30,57)(22,67,31,58)(23,68,32,59)(24,69,33,60)(25,70,34,61)(26,71,35,62)(27,72,36,63)(73,118,82,109)(74,119,83,110)(75,120,84,111)(76,121,85,112)(77,122,86,113)(78,123,87,114)(79,124,88,115)(80,125,89,116)(81,126,90,117)(91,136,100,127)(92,137,101,128)(93,138,102,129)(94,139,103,130)(95,140,104,131)(96,141,105,132)(97,142,106,133)(98,143,107,134)(99,144,108,135), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,26)(20,25)(21,24)(22,23)(28,35)(29,34)(30,33)(31,32)(37,62)(38,61)(39,60)(40,59)(41,58)(42,57)(43,56)(44,55)(45,63)(46,71)(47,70)(48,69)(49,68)(50,67)(51,66)(52,65)(53,64)(54,72)(73,89)(74,88)(75,87)(76,86)(77,85)(78,84)(79,83)(80,82)(81,90)(91,107)(92,106)(93,105)(94,104)(95,103)(96,102)(97,101)(98,100)(99,108)(109,143)(110,142)(111,141)(112,140)(113,139)(114,138)(115,137)(116,136)(117,144)(118,134)(119,133)(120,132)(121,131)(122,130)(123,129)(124,128)(125,127)(126,135)>;

G:=Group( (1,95,23,77)(2,96,24,78)(3,97,25,79)(4,98,26,80)(5,99,27,81)(6,91,19,73)(7,92,20,74)(8,93,21,75)(9,94,22,76)(10,100,28,82)(11,101,29,83)(12,102,30,84)(13,103,31,85)(14,104,32,86)(15,105,33,87)(16,106,34,88)(17,107,35,89)(18,108,36,90)(37,127,55,109)(38,128,56,110)(39,129,57,111)(40,130,58,112)(41,131,59,113)(42,132,60,114)(43,133,61,115)(44,134,62,116)(45,135,63,117)(46,136,64,118)(47,137,65,119)(48,138,66,120)(49,139,67,121)(50,140,68,122)(51,141,69,123)(52,142,70,124)(53,143,71,125)(54,144,72,126), (1,50,14,41)(2,51,15,42)(3,52,16,43)(4,53,17,44)(5,54,18,45)(6,46,10,37)(7,47,11,38)(8,48,12,39)(9,49,13,40)(19,64,28,55)(20,65,29,56)(21,66,30,57)(22,67,31,58)(23,68,32,59)(24,69,33,60)(25,70,34,61)(26,71,35,62)(27,72,36,63)(73,118,82,109)(74,119,83,110)(75,120,84,111)(76,121,85,112)(77,122,86,113)(78,123,87,114)(79,124,88,115)(80,125,89,116)(81,126,90,117)(91,136,100,127)(92,137,101,128)(93,138,102,129)(94,139,103,130)(95,140,104,131)(96,141,105,132)(97,142,106,133)(98,143,107,134)(99,144,108,135), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,26)(20,25)(21,24)(22,23)(28,35)(29,34)(30,33)(31,32)(37,62)(38,61)(39,60)(40,59)(41,58)(42,57)(43,56)(44,55)(45,63)(46,71)(47,70)(48,69)(49,68)(50,67)(51,66)(52,65)(53,64)(54,72)(73,89)(74,88)(75,87)(76,86)(77,85)(78,84)(79,83)(80,82)(81,90)(91,107)(92,106)(93,105)(94,104)(95,103)(96,102)(97,101)(98,100)(99,108)(109,143)(110,142)(111,141)(112,140)(113,139)(114,138)(115,137)(116,136)(117,144)(118,134)(119,133)(120,132)(121,131)(122,130)(123,129)(124,128)(125,127)(126,135) );

G=PermutationGroup([[(1,95,23,77),(2,96,24,78),(3,97,25,79),(4,98,26,80),(5,99,27,81),(6,91,19,73),(7,92,20,74),(8,93,21,75),(9,94,22,76),(10,100,28,82),(11,101,29,83),(12,102,30,84),(13,103,31,85),(14,104,32,86),(15,105,33,87),(16,106,34,88),(17,107,35,89),(18,108,36,90),(37,127,55,109),(38,128,56,110),(39,129,57,111),(40,130,58,112),(41,131,59,113),(42,132,60,114),(43,133,61,115),(44,134,62,116),(45,135,63,117),(46,136,64,118),(47,137,65,119),(48,138,66,120),(49,139,67,121),(50,140,68,122),(51,141,69,123),(52,142,70,124),(53,143,71,125),(54,144,72,126)], [(1,50,14,41),(2,51,15,42),(3,52,16,43),(4,53,17,44),(5,54,18,45),(6,46,10,37),(7,47,11,38),(8,48,12,39),(9,49,13,40),(19,64,28,55),(20,65,29,56),(21,66,30,57),(22,67,31,58),(23,68,32,59),(24,69,33,60),(25,70,34,61),(26,71,35,62),(27,72,36,63),(73,118,82,109),(74,119,83,110),(75,120,84,111),(76,121,85,112),(77,122,86,113),(78,123,87,114),(79,124,88,115),(80,125,89,116),(81,126,90,117),(91,136,100,127),(92,137,101,128),(93,138,102,129),(94,139,103,130),(95,140,104,131),(96,141,105,132),(97,142,106,133),(98,143,107,134),(99,144,108,135)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,9),(2,8),(3,7),(4,6),(10,17),(11,16),(12,15),(13,14),(19,26),(20,25),(21,24),(22,23),(28,35),(29,34),(30,33),(31,32),(37,62),(38,61),(39,60),(40,59),(41,58),(42,57),(43,56),(44,55),(45,63),(46,71),(47,70),(48,69),(49,68),(50,67),(51,66),(52,65),(53,64),(54,72),(73,89),(74,88),(75,87),(76,86),(77,85),(78,84),(79,83),(80,82),(81,90),(91,107),(92,106),(93,105),(94,104),(95,103),(96,102),(97,101),(98,100),(99,108),(109,143),(110,142),(111,141),(112,140),(113,139),(114,138),(115,137),(116,136),(117,144),(118,134),(119,133),(120,132),(121,131),(122,130),(123,129),(124,128),(125,127),(126,135)]])

78 conjugacy classes

class 1 2A2B2C2D2E 3 4A···4F4G4H6A6B6C9A9B9C12A···12L18A···18I36A···36AJ
order12222234···44466699912···1218···1836···36
size1111363622···236362222222···22···22···2

78 irreducible representations

dim111112222222222
type++++++++++++
imageC1C2C2C2C2S3D4D6C4○D4D9D12D18C4○D12D36D365C2
kernelC427D9D18⋊C4C4×C36C2×Dic18C2×D36C4×C12C36C2×C12C18C42C12C2×C4C6C4C2
# reps14111123434981224

Matrix representation of C427D9 in GL4(𝔽37) generated by

71400
233000
00310
00031
,
6000
0600
003023
00147
,
26600
312000
001711
00266
,
26600
171100
001711
003120
G:=sub<GL(4,GF(37))| [7,23,0,0,14,30,0,0,0,0,31,0,0,0,0,31],[6,0,0,0,0,6,0,0,0,0,30,14,0,0,23,7],[26,31,0,0,6,20,0,0,0,0,17,26,0,0,11,6],[26,17,0,0,6,11,0,0,0,0,17,31,0,0,11,20] >;

C427D9 in GAP, Magma, Sage, TeX

C_4^2\rtimes_7D_9
% in TeX

G:=Group("C4^2:7D9");
// GroupNames label

G:=SmallGroup(288,85);
// by ID

G=gap.SmallGroup(288,85);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,64,254,100,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^9=d^2=1,a*b=b*a,a*c=c*a,d*a*d=a*b^2,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽